(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(first(0, Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0, cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, cons, from, s, first, sel, proper, top

They will be analysed ascendingly in the following order:
cons < active
from < active
s < active
first < active
sel < active
active < top
cons < proper
from < proper
s < proper
first < proper
sel < proper
proper < top

(6) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
cons, active, from, s, first, sel, proper, top

They will be analysed ascendingly in the following order:
cons < active
from < active
s < active
first < active
sel < active
active < top
cons < proper
from < proper
s < proper
first < proper
sel < proper
proper < top

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Induction Base:
cons(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b))

Induction Step:
cons(gen_mark:0':nil:ok3_0(+(1, +(n5_0, 1))), gen_mark:0':nil:ok3_0(b)) →RΩ(1)
mark(cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
from, active, s, first, sel, proper, top

They will be analysed ascendingly in the following order:
from < active
s < active
first < active
sel < active
active < top
from < proper
s < proper
first < proper
sel < proper
proper < top

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)

Induction Base:
from(gen_mark:0':nil:ok3_0(+(1, 0)))

Induction Step:
from(gen_mark:0':nil:ok3_0(+(1, +(n938_0, 1)))) →RΩ(1)
mark(from(gen_mark:0':nil:ok3_0(+(1, n938_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
s, active, first, sel, proper, top

They will be analysed ascendingly in the following order:
s < active
first < active
sel < active
active < top
s < proper
first < proper
sel < proper
proper < top

(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)

Induction Base:
s(gen_mark:0':nil:ok3_0(+(1, 0)))

Induction Step:
s(gen_mark:0':nil:ok3_0(+(1, +(n1454_0, 1)))) →RΩ(1)
mark(s(gen_mark:0':nil:ok3_0(+(1, n1454_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(14) Complex Obligation (BEST)

(15) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
first, active, sel, proper, top

They will be analysed ascendingly in the following order:
first < active
sel < active
active < top
first < proper
sel < proper
proper < top

(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)

Induction Base:
first(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b))

Induction Step:
first(gen_mark:0':nil:ok3_0(+(1, +(n2071_0, 1))), gen_mark:0':nil:ok3_0(b)) →RΩ(1)
mark(first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(17) Complex Obligation (BEST)

(18) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
sel, active, proper, top

They will be analysed ascendingly in the following order:
sel < active
active < top
sel < proper
proper < top

(19) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Induction Base:
sel(gen_mark:0':nil:ok3_0(+(1, 0)), gen_mark:0':nil:ok3_0(b))

Induction Step:
sel(gen_mark:0':nil:ok3_0(+(1, +(n3919_0, 1))), gen_mark:0':nil:ok3_0(b)) →RΩ(1)
mark(sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(20) Complex Obligation (BEST)

(21) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(23) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(25) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

The following defined symbols remain to be analysed:
top

(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(27) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(28) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(29) BOUNDS(n^1, INF)

(30) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)
sel(gen_mark:0':nil:ok3_0(+(1, n3919_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n39190)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(31) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(32) BOUNDS(n^1, INF)

(33) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)
first(gen_mark:0':nil:ok3_0(+(1, n2071_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n20710)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(34) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(35) BOUNDS(n^1, INF)

(36) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)
s(gen_mark:0':nil:ok3_0(+(1, n1454_0))) → *4_0, rt ∈ Ω(n14540)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(37) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(38) BOUNDS(n^1, INF)

(39) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
from(gen_mark:0':nil:ok3_0(+(1, n938_0))) → *4_0, rt ∈ Ω(n9380)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(40) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(41) BOUNDS(n^1, INF)

(42) Obligation:

TRS:
Rules:
active(from(X)) → mark(cons(X, from(s(X))))
active(first(0', Z)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(sel(0', cons(X, Z))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(first(X1, X2)) → first(active(X1), X2)
active(first(X1, X2)) → first(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
first(mark(X1), X2) → mark(first(X1, X2))
first(X1, mark(X2)) → mark(first(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(first(X1, X2)) → first(proper(X1), proper(X2))
proper(0') → ok(0')
proper(nil) → ok(nil)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
first(ok(X1), ok(X2)) → ok(first(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: mark:0':nil:ok → mark:0':nil:ok
from :: mark:0':nil:ok → mark:0':nil:ok
mark :: mark:0':nil:ok → mark:0':nil:ok
cons :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
s :: mark:0':nil:ok → mark:0':nil:ok
first :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
0' :: mark:0':nil:ok
nil :: mark:0':nil:ok
sel :: mark:0':nil:ok → mark:0':nil:ok → mark:0':nil:ok
proper :: mark:0':nil:ok → mark:0':nil:ok
ok :: mark:0':nil:ok → mark:0':nil:ok
top :: mark:0':nil:ok → top
hole_mark:0':nil:ok1_0 :: mark:0':nil:ok
hole_top2_0 :: top
gen_mark:0':nil:ok3_0 :: Nat → mark:0':nil:ok

Lemmas:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:0':nil:ok3_0(0) ⇔ 0'
gen_mark:0':nil:ok3_0(+(x, 1)) ⇔ mark(gen_mark:0':nil:ok3_0(x))

No more defined symbols left to analyse.

(43) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
cons(gen_mark:0':nil:ok3_0(+(1, n5_0)), gen_mark:0':nil:ok3_0(b)) → *4_0, rt ∈ Ω(n50)

(44) BOUNDS(n^1, INF)